GASP Codes for Secure Distributed Matrix Multiplication
نویسندگان
چکیده
منابع مشابه
Hybrid Regenerating Codes for Distributed Storage Systems
Distributed storage systems are mainly justified due to their ability to store data reliably over some unreliable nodes such that the system can have long term durability. Recently, regenerating codes are proposed to make a balance between the repair bandwidth and the storage capacity per node. This is achieved through using the notion of network coding approach. In this paper, a new variation ...
متن کاملCommunication lower bounds for distributed-memory matrix multiplication
We present lower bounds on the amount of communication that matrixmultiplication algorithms must perform on a distributed-memory parallel computer. We denote the number of processors by P and the dimension of square matrices by n. We show that the most widely-used class of algorithms, the so-called 2-dimensional (2D) algorithms, are optimal, in the sense that in any algorithm that uses only O(n...
متن کاملEfficient Secure Matrix Multiplication over Lwe-based Homomorphic Encryption
Homomorphic encryption enables various calculations while preserving the data confidentiality. In this paper, we apply the somewhat homomorphic encryption scheme proposed by Brakerski and Vaikuntanathan (CRYPTO 2011) to secure matrix multiplication between two matrices. To reduce both the ciphertext size and the computation cost, we propose a new method to pack a matrix into a single ciphertext...
متن کاملAn efficient secure channel coding scheme based on polar codes
In this paper, we propose a new framework for joint encryption encoding scheme based on polar codes, namely efficient and secure joint secret key encryption channel coding scheme. The issue of using new coding structure, i.e. polar codes in Rao-Nam (RN) like schemes is addressed. Cryptanalysis methods show that the proposed scheme has an acceptable level of security with a relatively smaller ke...
متن کاملAlgorithms for Matrix Multiplication
Strassen’s and Winograd’s algorithms for n × n matrix multiplication are investigated and compared with the normal algorithm. The normal algorithm requires n3 + O(n2) multiplications and about the same number of additions. Winograd’s algorithm almost halves the number of multiplications at the expense of more additions. Strassen’s algorithm reduces the total number of operations to O(n2.82) by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2020
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2020.2975021